Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(4-Acetylphenyl)maleamic acid

Daniel E. Lynch^{a*} and Ian McClenaghan^b

^aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ^bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.047wR factor = 0.133 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The structure of the title compound, $C_{12}H_{11}NO_4$, comprises an essentially flat molecule displaying a typical maleic acid intramolecular hydrogen bond. An intermolecular N-H···O association exists from the amide to the carboxylic acid carbonyl O atom, while several C-H···O close contacts are observed around the maleamic acid O atoms.

Received 1 May 2002 Accepted 16 May 2002 Online 24 May 2002

Comment

The structure of the title compound, (I), comprises an essentially flat molecule displaying a typical maleic acid intramolecular hydrogen bond. In this interaction, the O···O distance of 2.465 (2) Å is short, whereas the refined O-H distance of 1.11 (3) A is longer than expected. The corresponding $H \cdot \cdot \cdot O$ distance of 1.37 (3) A indicates that the H atom is essentially delocalized between the two O atoms. An intermolecular N-H···O association exists from the amide to the carboxylic acid carbonyl O atom, while several C-H···O close contacts are observed around the maleamic acid O atoms. The title compound is a precursor to the corresponding maleimide.

Experimental

The title compound was obtained from Key Organics Ltd. Crystals were grown from an ethanol solution.

Crystal data

 $D_r = 1.471 \,\mathrm{Mg \, m^{-3}}$ $C_{12}H_{11}NO_4$ $M_r = 233.22$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 6037 a = 5.5577 (3) Å reflections b = 25.5016 (14) Å $\theta = 1.0 - 27.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ c = 7.4588 (5) Å $\beta = 95.134 (2)^{\circ}$ T = 150 (2) K $V = 1052.90 (11) \text{ Å}^3$ Block, yellow Z = 4 $0.10 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Bruker-Nonius KappaCCD area-2227 independent reflections detector diffractometer 1479 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$ φ and ω scans Absorption correction: multi-scan $\theta_{\rm max} = 27.5^{\circ}$ (SORTAV; Blessing, 1995) $h = -7 \rightarrow 7$ $T_{\min} = 0.989, T_{\max} = 0.989$ $k = -32 \rightarrow 33$ 5131 measured reflections $l = -9 \rightarrow 9$

DOI: 10.1107/S1600536802008851

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0649P)^2]$ $W = 1/[\sigma^2(F_o^2) + (0.0649P)^2]$ $WR(F^2) = 0.133$ W = 1.05 $W = P = (F_o^2 + 2F_c^2)/3$ W = 1.05 $W = P = (F_o^2 + 2F_c^2)/3$ $W = 1/[\sigma^2(F_o^2) + (0.0649P)^2]$ $W = 1/[\sigma^2(F_o^2) + (0.0474P]$ $W = 1/[\sigma^2(F_o^2) + (0.0649P)^2]$ $W = 1/[\sigma^2(F_o^2) + (0.0474P]$ $W = 1/[\sigma^2(F_o^2) + (0.0474$

Table 1 Hydrogen-bonding geometry (\mathring{A} , $\mathring{\circ}$).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
N7-H7···O10 ⁱ	0.88 (2)	1.93 (2)	2.809 (2)	178 (2)
O11-H11···O81	1.11(3)	1.37(3)	2.465 (2)	169 (2)
C2-H2···O81	0.95	2.24	2.842 (2)	121
$C6-H6\cdots O10^{i}$	0.95	2.54	3.289(2)	136
C9−H9···O11 ⁱ	0.95	2.59	3.533(2)	174

Symmetry codes: (i) $x - 1, \frac{1}{2} - y, z - \frac{1}{2}$

All H atoms were included in the refinement, at calculated positions, as riding models, with C—H set to 0.95 (Ar—H) and 0.98 Å (CH₃), except for the carboxylic acid and amine H atoms, which were located in a difference synthesis; these atoms were refined freely.

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics:

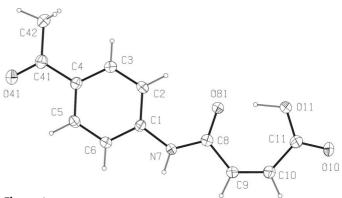


Figure 1
The molecular configuration and atom-numbering scheme for (I), showing 50% probability ellipsoids.

*PLATON*97 (Spek, 1997); software used to prepare material for publication: *SHELXL*97 (Sheldrick, 1997).

The authors thank the EPSRC National Crystallography Service (Southampton).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1997). PLATON97. Version of May 1997. University of Utrecht, The Netherlands.